PIANO ANNUALE PER L' ANNO SCOLASTICO 2019/2020

DEL PROF.	DOCENTE DI	NELLA CLASSE	INDIRIZZO	ORE SETTIM.
Paolo PATERGNANI	TP di sistemi elettrici ed elettronici	IV° G ITT	ELETTRONICA ED ELETTROTECNICA (art. elettronica)	6(3)

FINALITA', OBIETTIVI FORMATIVI E DI APPRENDIMENTO

Finalità dell'insegnamento di:

TECNOLOGIE E PROGETTAZIONE DI SISTEMI ELETTRICI ED ELETTRONICI

Il docente di "Tecnologie e progettazione di sistemi elettrici ed elettronici" concorre a far conseguire allo studente, al termine del percorso quinquennale, i seguenti risultati: utilizzare, in contesti di ricerca applicata, procedure e tecniche per trovare soluzioni innovative e migliorative, in relazione ai campi di propria competenza; cogliere l'importanza dell'orientamento al risultato, del lavoro per obiettivi e della necessità di assumere responsabilità nel rispetto dell'etica e della deontologia professionale; riconoscere gli aspetti di efficacia, efficienza e qualità nella propria attività lavorativa; saper interpretare il proprio autonomo ruolo nel lavoro di gruppo; essere consapevole del valore sociale della propria attività, partecipando attivamente alla vita civile e culturale a livello locale, nazionale e comunitario, riconoscere e applicare i principi dell'organizzazione, della gestione e del controllo dei diversi processi produttivi; analizzare criticamente il contributo apportato dalla scienza e dalla tecnologia allo sviluppo dei saperi e al cambiamento delle condizioni di vita: riconoscere le implicazioni etiche, sociali, scientifiche, produttive, economiche e ambientali dell'innovazione tecnologica e delle sue applicazioni industriali.

Modalità d'intervento

I programmi di insegnamento sono formulati in termini sintetici. Questa impostazione risponde, peraltro, all'esigenza di adeguare l'insegnamento al progresso scientifico e tecnologico, particolarmente rapido nel settore tecnico. E' pertanto indispensabile che gli insegnamenti di tale genere si sviluppino in un alternarsi coordinato di informazioni ed applicazioni, di ricerca sperimentale e sistematizzazione, attraverso la conoscenza da parte di ciascun insegnante degli obiettivi relativi a tutte le discipline e non solo quelli della propria.

Obiettivi minimi da perseguire

- Conoscere definizioni modello bidimensionale di un semiconduttore intrinseco ed estrinseco.
- > Conoscere e saper applicare le principali leggi che governano la fisica dei semiconduttori.
- Conoscere la tecnologia della produzione del silicio (intrinseco e estrinseco).
- Conoscere il funzionamento della giunzione PN, le principali tipologie di diodo e le loro applicazioni.
- Conoscere la fisica di base del funzionamento dei transistori BJT.
- Conoscere la fisica di base del funzionamento dei transistori JFET e MOS.
- Conoscere le problematiche dello smaltimento del calore nei dispositivi di potenza.
- Aver conoscenze di base di alcuni componenti attivi per l'elettronica di potenza.
- > Conoscere le principali tipologie di memorie.
- Conoscere la struttura di base di un microprocessore ed il suo funzionamento.
- > Conoscere le problematiche di base del dimensionamento degli impianti.
- Conoscere tipologie e tecnologie dei circuiti stampati.
- Conoscere a grandi linee i contenuti della direttiva macchine i presupposti della marchiatura CE e le problematiche di sicurezza.
- Saper usare un cad per progettazione di circuiti stampati.

PIANO ANNUALE

DEL PROF.	DOCENTE DI	NELLA CLASSE	INDIRIZZO	ORE SETTIM.
Paolo PATERGNANI	TP di sistemi elettrici ed elettronici	IV°G ITT	ELETTRONICA ED ELETTROTECNICA (art. elettronica)	6(3)

MODULI	CONTENUTI	COMPETENZE/ OBIETTIVI/CAPACITA'	METODI	TEMPI	COLLEGAMENTI INTERDISCIPLINARI	TIPOLOGIA DI VERIFICA
Stato solido e teoria dei materiali semiconduttori. (recupero argomenti di III°)	La struttura dell'atomo e le bande di energia nei solidi. I semiconduttori (Si, Ge, ecc). Il drogaggio di un semiconduttore (accettori e donori) – concentrazione di elettroni e lacune. Le leggi e le relazioni nei semiconduttori. Conduttività e resistività di intrinseco ed estrinseco – calcolo della resistenza. La tecnologia di produzione del silicio intrinseco (Si) metodo Siemens, fusione a zone, crescita del monocristallo. La tecnologia della produzione del germanio (Ge) e dell'arseniuro di gallio (GaAs).	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	settembre ottobre.	Matematica Elettronica Fisica Chimica	Verifiche scritte interrogazioni orali
La giunzione PN e il diodo.	La giunzione PN teoria del funzionamento, modello idraulico. Processi di realizzazione di zone drogate nei semiconduttori. Le principali tipologie di diodo (Diodo raddrizzatore e di commutazione, diodo Zener, diodo Varicap [VARACTOR], diodo PIN, diodo Schottky, i dispositivi a valanga: diodo Tunnel, GUNN, IMPATT, TRAPATT e i Transit Time Device).	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	ottobre novembre.	Matematica Elettronica Fisica.	Verifiche scritte interrogazioni orali
Il transistor BJT e i suoi processi di produzione.	Il modello di funzionamento e le principali equazioni del BJT, il modello idraulico del BJT. Il transistor BJT per piccoli segnali . Le tecnologie di fabbricazione di diodi e transistor a giunzione (planare, planare epitassiale ecc.). La tecnologia del vuoto e la realizzazione delle metallizzazioni.	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	novembre gennaio.	Elettronica.	Verifiche scritte interrogazioni orali
Il transistor ad effetto di campo FET e MOS e i suoi processi di produzione.	Il JFET e il MOSFET modello di funzionamento. I processi produttivi dei JFET e MOSFET .	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	dicembre febbraio.	Elettronica	Verifiche scritte interrogazioni orali
Componenti per l'elettronica di potenza - il problema della dissipazione del calore	I BJT di potenza (la configurazione Darlington). I CMD (conductivity modulated devices), l'IGBT. I MOSFET di potenza: VMOS, DMOS e UMOS. La resistenza termica, l'equazione della trasmissione del calore; semplici calcoli di dissipatori.	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	febbraio marzo.	Matematica Elettronica Fisica	Verifiche scritte interrogazioni orali
I circuiti integrati LSI e i microprocessori	I circuiti integrati di memoria (RAM, ROM, PROM, EPROM, EPROM, NV-RAM, Flash ecc.). Microprocessori e DSP (cenni).	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	aprile maggio	Elettronica Elettrotecnica Fisica	Verifiche scritte interrogazioni orali
Disegno e fabbricazione di circuiti stampati.	Circuiti stampati: tipologie, metodi di fabbricazione, collaudo e montaggio. La saldatura dei componenti. I cad per i circuiti stampati.	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	aprile	Elettronica	Verifiche scritte interrogazioni orali
La "DIRETTIVA MACCHINE"	Premesse, sicurezza, comandi di avviamento-arresto, selezione modale di funzionamento. Rottura e ulteriori rischi. Valutazione e stima dei rischi (matrice di rischio), identificazione dei pericoli. Dichiarazione di conformità, marchiatura CE, Fascicolo tecnico e Manuale di istruzione.	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercizi.	maggio	Italiano Elettronica	Verifiche scritte interrogazioni orali

laboratorio inerenti tecnologie e gli arg	zzazioni di circuiti e cablaggi inerenti le omenti trattati, misure sui dispositivi e i, tecniche di diagnosi e ricerca dei guasti. ırduino .	Conoscenza degli argomenti indicati.	Lezione frontale, esempi ed esercitazioni di laboratorio.	ottobre giugno	Laboratorio di Sistemi elettronici ed elettrici automatici. Laboratorio di Elettronica Laboratorio di elettrotecnica.	Relazione di laboratorio e prove pratiche di laboratorio.
---	--	--------------------------------------	---	-------------------	--	---

Bolzano, 20 settembre 2019

Il docente prof. Paolo Patergnani