PROGRAMMAZIONE DELLA ATTIVITÀ DIDATTICA

Materia: MATEMATICA

Ore settimanali: 3

Docente: prof.ssa Debora Di Caprio

CONTENUTI			METODOLOGIE				
MODULI	UNITÀ DIDATTICHE	CONOSCENZE, COMPETENZE, CAPACITA'	METODI	MEZZI	TEMPI	SPAZI	VERIFI CHE
1. DISEQUAZIONI ripasso e approfondimenti.	Disequazioni di 1° e 2° grado: disequazioni razionali intere e fratte. Disequazioni esponenziali e logaritmiche. Disequazioni irrazionali con un membro nullo e l'altro ridotto ad un solo radicale. Sistemi di disequazioni. Condizioni di esistenza di frazioni, logaritmi e radici. Intervalli ed intorni reali. Soluzioni in notazione insiemistica (intervalli reali). Grafici di funzioni elementari (funzioni polinomiali, logaritmiche, esponenziali e goniometriche, valore assoluto) e loro trasformazioni geometriche.	Saper riconoscere e risolvere, anche aiutandosi con i grafici relativi, le disequazioni della tipologia e del livello di difficoltà trattati. Saper tracciare grafici di funzioni elementari. Saper interpretare geometricamente, mediante traslazioni e simmetrie del piano, variazioni nella definizione analitica delle funzioni trattate.	Lezioni frontali e dialogi- che. Svolgime- nto guidato di esercizi alla	Libro di testo. Appunti e schede preparati dall'insegnante.	Sett. Ott.	Aula standard	Orali, scritte, e oral-scritte, strutturate (sotto forma di domande a risposta multipla) e non.
2. FUNZIONI REALI DI VARIABILE REALE	Definizione di funzione reale di una variabile reale. Definizione di dominio, condominio ed immagine di una funzione reale. Funzioni pari e dispari. Classificazione di funzioni in razionali (intere e fratte), irrazionali, esponenziali, logaritmiche e trigonometriche. Studio del segno di una funzione. Monotonicità, concavità e convessità in un intervallo.	Conoscere il concetto di funzione. Saper determinare il dominio ed l'immagine di una funzione. Riconoscere il tipo di funzione che viene proposta e saper fornire esempi in maniera autonoma. Comprendere il significato di segno di una funzione e saperlo studiare.	lavagna. CLIL		Ott. Nov.		
3. LIMITI DI FUNZIONI REALI	Definizione intuitiva del concetto di limite. Limiti al finito e all'infinito. Limite destro e limite sinistro per $x \to a$, con a numero reale. Limiti di somme e di differenze di funzioni; limiti di prodotti e rapporti tra funzioni; limiti di funzioni composte.	Conoscere ed operare col concetto di limite ed interpretare geometricamente un limite. Conoscere le proprietà di una funzione in tutti i punti in cui è definita, in particolare, nei punti estremi del dominio. Conoscere e saper applicare le regole ed i teoremi sui limiti trattati.			Dic. Gen. Feb.		
4. FUNZIONI CONTINUE (parallelo al modulo 3)	Continuità e discontinuità di una funzione. Punti di discontinuità di prima, seconda e terza specie. Asintoti verticali ed orizzontali. Teoremi (enunciati e significato geometrico) sulle funzioni continue: dei valori estremi; dei valori intermedi; esistenza degli zeri.	Operare col concetto di continuità relativo ad una funzione. Riconoscere e/o saper determinare il comportamento della funzione in prossimità di quei punti dove essa non è definita. Riconoscere e/o saper determinare punti di discontinuità ed asintoti. Conoscere, riconoscere e saper determinare asintoti. Risolvere forme indeterminate coinvolte nella determinazione di asintoti.					

5. DERIVATA DI UNA FUNZIONE REALE	Definizione di derivata per una funzione continua in un punto. Significato geometrico di derivata in un punto. Esempi (anche solo grafici intuitivi) di punti di non derivabilità: punti angolosi, cuspidi flessi verticali. Derivate di funzioni elementari: x^a (con a numero reale); $ln x$, a^x (con a numero reale), $sin x$; $cos x$. Determinazione dell'equazione di una retta tangente al grafico di una funzione in un punto assegnato. Proprietà e teoremi sulle derivate: derivata di una somma e di un prodotto di funzioni; derivata della differenza e del rapporto tra due funzioni; derivata di una funzione composta. Studio del segno di derivata prima: crescenza e decrescenza di una funzione; massimi e minimi relativi e assoluti. Cenni sullo studio della derivata seconda, concavità/convessità e flessi a tangente obliqua.	significato geometrico. Conoscere e saper applicare le regole ed i teoremi sulle derivate trattati. Saper fornire esempi in maniera autonoma	Mar. Apr.
6. DIAGRAMMA DI UNA FUNZIONE (trasversale ai moduli 2, 3, 4, 5)	Classificazione della funzione. Dominio della funzione. Segno della funzione. Comportamento agli estremi del dominio. Eventuali intersezioni con gli assi. Ricerca degli asintoti. Studio di crescenza/decrescenza: punti di minimo e massimi relativi; flessi a tangente orizzontale. Concavità/convessità e punti di flesso a tangente obliqua. Rappresentazione grafica della funzione.	Saper rappresentare il grafico di una funzione studiandone gli eventuali asintoti, i punti di intersezione con gli assi, i punti stazionari, l'andamento e la concavità. Saper studiare funzioni razionali intere e fratte. Sapersi orientare nello studio di funzioni irrazionali, esponenziali e logaritmiche. Saper fornire esempi in maniera autonoma. Saper elaborare opportune soluzioni in maniera critica, adattando e rielaborando contenuti già acquisiti.	Da Ott. a Apr.
7. CALCOLO NUMERICO: APPROS. DEGLI ZERI	Proprietà locali e globali delle funzioni. Formula di Taylor. Risoluzione approssimata di equazioni: metodo di bisezione, metodo delle tangenti.	Risolvere equazioni e disequazioni con metodi grafici o numerici, anche con l'aiuto di strumenti elettronici. Utilizzare le strategie del pensiero razionale nell'applicazione di algoritmi per affrontare specifiche situazioni problematiche.	Apr. Mag.
8. ELEMENTI DI STATISTICA	Ragionamento induttivo e basi concettuali dell'inferenza. Distribuzioni doppie di frequenze. Indicatori statistici mediante rapporti e differenze. Concetti di dipendenza, correlazione, regressione. Disposizioni semplici. Permutazioni e combinazioni semplici. Coefficienti binomiali e relative proprietà. Binomio di Newton. Elementi di calcolo delle probabilità.	Calcolare frequenze relative, rapporti statistici, valori medi e alcune misure di variabilità di una distribuzione di dati. Analizzare distribuzioni doppie di frequenze. Calcolare ed interpretare, anche con l'uso del computer, misure di correlazione e parametri di regressione. Calcolare il numero di permutazioni, disposizioni, combinazioni in un insieme. Calcolare la probabilità di eventi elementari.	Mag. Giu.

Bolzano, 28.09.2016