PIANO ANNUALE PER L' ANNO SCOLASTICO 2020/2021

DEL PROF.	DOCENTE DI	NELLA CLASSE	INDIRIZZO	ORE SETTIM.
Paolo PATERGNANI	TP di sistemi elettrici ed elettronici	V° G ITT	ELETTRONICA ED ELETTROTECNICA (art. elettronica)	7(3)

FINALITA', OBIETTIVI FORMATIVI E DI APPRENDIMENTO

Finalità dell'insegnamento di:

TECNOLOGIE E PROGETTAZIONE DI SISTEMI ELETTRICI ED ELETTRONICI

Il docente di "Tecnologie e progettazione di sistemi elettrici ed elettronici" concorre a far consequire allo studente, al termine del percorso quinquennale, i seguenti risultati: utilizzare, in contesti di ricerca applicata, procedure e tecniche per trovare soluzioni innovative e migliorative, in relazione ai campi di propria competenza; cogliere l'importanza dell'orientamento al risultato, del lavoro per obiettivi e della necessità di assumere responsabilità nel rispetto dell'etica e della deontologia professionale; riconoscere gli aspetti di efficacia, efficienza e qualità nella propria attività lavorativa; saper interpretare il proprio autonomo ruolo nel lavoro di gruppo; essere consapevole del valore sociale della propria attività, partecipando attivamente alla vita civile e culturale a livello locale, nazionale e comunitario; riconoscere e applicare i principi dell'organizzazione, della gestione e del controllo dei diversi processi produttivi; analizzare criticamente il contributo apportato dalla scienza e dalla tecnologia allo sviluppo dei saperi e al cambiamento delle condizioni di vita; riconoscere le implicazioni etiche, sociali, scientifiche, produttive, economiche e ambientali dell'innovazione tecnologica e delle sue applicazioni industriali.

Modalità d'intervento

I programmi di insegnamento sono formulati in termini sintetici. Questa impostazione risponde, peraltro, all'esigenza di adeguare l'insegnamento al progresso scientifico e tecnologico, particolarmente rapido nel settore tecnico. E' pertanto indispensabile che gli insegnamenti di tale genere si sviluppino in un alternarsi coordinato di informazioni ed applicazioni, di ricerca sperimentale e sistematizzazione, attraverso la conoscenza da parte di ciascun insegnante degli obiettivi relativi a tutte le discipline e non solo quelli della propria.

Obiettivi minimi da perseguire

- Conoscere i dB e le unità di misura relative e assolute in cala logaritmica.
- > Saper compiere calcoli a mano di guadagni ed attenuazioni espressi in dB e saper convertire dBm e dBV, rispettivamente in W ed in V.
- > Conoscere i principi ottici delle fibre ottiche e le principali tipologie di fibra e le problematiche di uso ad esse associate.
- Aver conoscenze di base delle tecnologie di produzione delle fibre ottiche.
- Conoscere le principali tipologie di linee in cavo.
- Conoscere la schema di base di un analizzatore di spettro e alcune tipologie di misura con l'analizzatore di spettro.
- Conoscere i principali tipi di sensori e trasduttori, le loro caratteristiche e il loro principio di funzionamento.
- Conoscere i principali componenti optoelettronici (LED, LASER, DISPLAY OPTOCOUPLERS) con i relativi utilizzi.
- Conoscere i principali dispositivi elettronici di potenza.
- Conoscere a grandi linee i principali tipi di motori e i trasduttori elettroacustici.
- > Conoscere le principali tecnologie degli alimentatori.
- Conoscere i concetti di base della sicurezza sul lavoro.
- > Saper usare gli strumenti di laboratorio per le misure e saper montare e testare circuiti relativi alle parti teoriche svolte.

PIANO ANNUALE

DEL PROF.	DOCENTE DI	NELLA CLASSE	INDIRIZZO	ORE SETTIM.
Paolo PATERGNANI	TP di sistemi elettrici ed elettronici	V°G ITT	ELETTRONICA ED ELETTROTECNICA (art. elettronica)	7(3)

MODULI	CONTENUTI	COMPETENZE/ OBIETTIVI/CAPACITA'	METODI	TEMPI	COLLEGAMENTI INTERDISCIPLINARI	TIPOLOGIA DI VERIFICA
Il deciBel nelle misure relative ed assolute	Il deciBel: Introduzione e definizioni misure relative di potenza e di tensione. Le misure assolute il dBm, il dBV (dB μ V) relazioni dBm-dBV per carichi da 50 $[\Omega].$ Metodo di calcolo manuale per i dB.	Conoscere le misure espresse in dB, dBm, deBV, loro multipli e sottomultipli. Saper calcolare grandezze logaritmiche con il metodo semplificato senza l'uso di calcolatrici.	Lezione frontale, esempi ed esercizi.	settembre.	Matematica Elettronica	Verifiche scritte interrogazioni orali
Sistemi per la trasmissione dell'informazione: i cavi e la fibra ottica.	Teoria delle linee in cavo: Il cavo coassiale, la linea bifilare, il doppino telefonico, i cavi per trasmissione dati ecc La fibra ottica introduzione, principi di funzionamento e tipologie. La tecnologia di produzione delle fibre ottiche.	Conoscere i cavi coassiali e le fibre ottiche, le loro caratteristiche e i processi produttivi Saper dimensionare un sistema trasmissivo in cavo o fibra ottica. Saper scegliere i componenti adatti	Lezione frontale, esempi ed esercizi.	ottobre novembre.	Matematica Elettronica Fisica	Verifiche scritte interrogazioni orali
II LASER	Principio di funzionamento del diodo LASER(Emissione spontanea e stimolata, inversione di popolazione). Le principali tipologie di LASER a semiconduttori.	Conoscere il principio di funzionamento del LASER. Saper distinguere le tipologie di LASER.				
L'Analizzatore di spettro	L'analizzatore di spettro: teoria di funzionamento. Misure con l'analizzatore di spettro.	Conoscere l'architettura di base e il funzionamento dell'A. di S Saper eseguire semplici misure con l'A. di S	Lezione frontale, esempi ed esercizi.	ottobre novembre.	Matematica Elettronica Fisica	Verifiche scritte interrogazioni orali
Dispositivi optoelettronici	Fotoemettitori LED e diodi LASER (II LASER). Display: LED DISPLAY, LCD, VFD (Vacuum Fluorescent Display), PDP (Plasma Display Panel). Fotorivelatori: Fotodiodi e celle fotovoltaiche, Fototransistor, Fototyristor, Optocouplers, SSR (Solid State Relay).	Conoscere i principali componenti optoelettronici, il loro principio di funzionamento. Saper scegliere il componente più adatto a seconda dell'impiego specifico .	Lezione frontale, esempi ed esercizi.	aprile	Elettronica Fisica	Verifiche scritte interrogazioni orali
Sensori e trasduttori.	Sensori ne trasduttori: introduzione. Trasduttori di posizione, velocità (accelerazione), pressione (forza) temperatura, livello ecc Sensori di prossimità, sensori di gas (fumo, prodotti di combustione, fiamma). Sensori a fibra ottica, sensori intelligenti, circuiti di condizion Trasduttori acustoelettrici ed elettroacustici .	Conoscere le principali tipologie di componenti in grado di trasdurre le varie grandezze. Saper scegliere il componente di trasduzione più adatto allo scopo . Essere in grado di usare alcuni tipi di sensori .	Lezione frontale, esempi ed esercizi.	dicembre febbraio.	Elettronica Elettrotecnica Fisica	Verifiche scritte interrogazioni orali
Dispositivi elettronici di potenza.	Il transistor bipolare e il MOS come dispositivo di potenza. I Tyristor (SCR), i DIAC, i TRIAC, i GTO, teoria di funzionamento e circuiti applicativi.	Conoscere principio di funzionamento dei principali dispositivi elettronici di potenza e i loro circuiti applicativi. Saper impiegare alcuni di tali dispositivi.	Lezione frontale, esempi ed esercizi.	febbraio marzo	Elettronica Elettrotecnica	Verifiche scritte interrogazioni orali
Dispositivi di conversione dell'energia elettromeccanica.	Motori elettrici: principio di funzionamento. Motori DC: Motori a spazzole, Motori Brushless Motori Stepper (passo-passo). Motori AC: Motori a induzione (Asincroni), Motori Sincroni. Motori universali (DC, AC). Elettromagneti.	Conoscere il principio di funzionamento e l'impiego delle principali tipologie di motori elettrici. Saper scegliere il componente più adatto allo scopo.	Lezione frontale, esempi ed esercizi.	marzo aprile	Elettronica Elettrotecnica Fisica	Verifiche scritte interrogazioni orali

Dispositivi di conversione della tensione di alimentazione.	Alimentatori lineari. Regolatori integrati. Alimentatori a commutazione (switching). Convertitori DC/DC.	Conosce i principali tipi di alimentatori lineari discreti ed integrati. Conoscere il principio di funzionamento dei principali alimentatori switching e sapere scegliere i più adatti allo scopo.	Lezione frontale, esempi ed esercizi.	aprile maggio	Elettronica Elettrotecnica Fisica	Verifiche scritte interrogazioni orali
I rifiuti elettronici e La sicurezza sul lavoro.	Sistema di gestione dei rifiuti di apparecchiature elettriche ed elettroniche (RAEE). Il servizio di prevenzione e protezione dai rischi. Il piano di emergenza. La segnaletica di sicurezza e il pronto soccorso aziendale. Il mobbing. Il codice della privacy e le misure minime di sicurezza.	Conoscere le problematiche dello smaltimento dei circuiti e degli apparecchi elettronici e la relativa legislazione vigente. Aver presente le principali norme sulla sicurezza sul luogo di lavoro. Essere sensibilizzati al problema della sicurezza sul luogo di lavoro.	Lezione frontale, esempi ed esercizi.	maggio	Elettronica Elettrotecnica Fisica	Verifiche scritte interrogazioni orali
Esercitazioni di laboratorio inerenti misure e realizzazioni di circuiti e impianti.	Simulazione e realizzazioni di circuiti e cablaggi inerenti le tecnologie e gli argomenti trattati, misure sui dispositivi e componenti trattati. Misure sulle fibre ottiche, misure con l'analizzatore di spettro. Realizzazioni circuiti con Arduino .	Saper utilizzare i principali strumenti di laboratorio e i principali software di simulazione e progettazione dei C. S Saper utilizzare in svariate applicazioni Arduino e saper scrivere i relativi codici.	Lezione frontale, esempi ed esercitazioni di laboratorio.	ottobre giugno	Laboratorio di Sistemi elettronici ed elettrici automatici. Laboratorio di Elettronica Laboratorio di elettrotecnica.	Relazione di laboratorio e prove pratiche di laboratorio.

Bolzano, 20 ottobre 2020

Il docente prof. Paolo Patergnani prof. PATERGNANI ing. Paolo