I.I.S.S. G. GALILEI CLASSE 5G

PROGRAMMA A.S. 2019/2020

ELETTRONICA: ELETTROTECNICA

PROF.SSA ANGELA MARAGIOGLIO

BLOCCHI TEMATICI O UNITA' DIDATTICHE	CONTENUTI	OBIETTIVI SPECIFICI RELATIVI	SCELTE METODOLOGICHE	TEMPI	COLLEGAMENTI INTERDISCIPLINAR I	TIPOLOGIA DI VERIFICA
MODULO 1 Ripasso sui metodi di risoluzione delle reti elettriche MODULO 2: Amplificatore Operazionali	Metodo di risoluzione delle reti elettriche più comuni: Kirchoff, Thevenin, metodo di sovrapposizione degli effetti. Laboratorio: esempi di circuiti risolti con diverse metodologie Amplificatore operazionale e applicazioni in campo lineare. Configurazione invertente e non invertente, sommatore, differenziale. Prove di laboratorio: operazionale nelle varie configurazioni circuitali	Sapere risolvere semplici reti elettriche Comprendere il funzionamento ideale e reale di un operazionale e delle principali configurazioni circuitali	Lezione frontale, esercizi, prove di laboratorio, simulazioni al computer, utilizzo dei datasheet. Queste scelte metodologiche sono comuni a tutti i moduli.	2 settimane 1 mese	Elettrotecnica, Matematica, TDP Fisica, Sistemi automatici Queste collegamenti sono comuni a tutti i moduli.	Orale e scritta Esercitazioni di laboratorio Queste tipologie di verifica sono comuni a tutti i moduli

MODULO 3: Generatori di Forme d'onda	Multivibratori: astabili e monostabili con BJT, operazionali e con porte logiche, generatori di forme d'onda quadre e triangolari, integrato 555. Laboratorio: Astabile con operazionale, Generatore di onde quadre, triangolari e sinusoidali. Astabili a BJT con duty cycle fisso e variabile. Circuiti con NE555.	Conoscere la classificazione dei multivibratori, conoscere e sapere applicare i principi teorici e le tecniche progettuali e di analisi delle diverse possibili soluzioni circuitali	3 mesi	
	Oscillatori sinusoidali: per bassa frequenza e per alta frequenza. Oscillatore di Wien, a sfasamento, in quadratura, di Colpitts, di Hartley, al quarzo, di Pierce. Astabili al quarzo. Laboratorio: Oscillatore Wien, Lampeggiatore e interruttore crepuscolare con NE555. Lampeggiatore a LED.	Conoscere i principi di funzionamento dei più significativi oscillatori sinusoidali, saper valutare le prestazioni e saper procedere al dimensionamento.		

	G: : 1 : 1			
	Circuito che simula un			
	pianoforte.			
MODULO 4:	Trasduzione e			
Acquisizione e	condizionamento dei segnali:		3 mesi	
conversione	Classificazione dei trasduttori,	Comprendere		
		l'importanza dei		
	-	trasduttori nei		
	1			
	semiconduttore, sensori			
	*	acquisizione e		
	integrati, AD590 ed LM35),	controllo,		
	trasduttori fotoelettrici,	conoscerne i tipi		
	trasduttori estensimetrici (celle	più significativi e		
	di carico, sensori di pressione).	saper progettare i		
	Laboratorio: circuito di	relativi circuiti di		
	condizionamento per una	condizionamento.		
	termoresistenza, circuito con	condizionamento.		
	PT100, circuito con			
	NTC, circuito di			
	,			
	condizionamento con LM35,			
	circuito di condizionamento			
	con AD590			
	Conversione D/A: principi			
	della conversione D/A, errore di			
		Conoscere i		
	quantizzazione, conversione	principi di		

digitale analogico. Circuito DAC a resistori pesati, rete R-2R. Simulazione al computer del circuito a resistori pesati.			
Conversione A/D: errore di quantizzazione come rumore, principio di funzionamento degli ADC, il convertitore parallelo (flash e half flash), ADC ad approssimazioni successive, gli ADC ad integrazione, interfacciamento di un ADC ad un sistema a bus, ENOB, problema dell'acquisizione delle grandezze variabili nel tempo, teorema di Shannon, Sample and Hold, modulazione Sigma-Delta.	problema. Conoscere i principi di funzionamento dei convertitori A/D, saperne valutare le prestazioni e saper scegliere il		